Problem 4.11

A particle of mass m is placed in a finite spherical well:

$$
V(r)= \begin{cases}-V_{0}, & r \leq a \\ 0, & r>a\end{cases}
$$

Find the ground state, by solving the radial equation with $\ell=0$. Show that there is no bound state if $V_{0} a^{2}<\pi^{2} \hbar^{2} / 8 m$.

Solution

The governing equation for the wave function is Schrödinger's equation. (Use M for the mass.)

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 M} \nabla^{2} \Psi+V \Psi
$$

If the potential energy function is spherically symmetric $V=V(r)$, then the Laplacian operator is expanded in spherical coordinates (r, θ, ϕ), where θ is the angle from the polar axis.

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 M}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}\right]+V(r) \Psi(r, \theta, \phi, t)
$$

The aim is to solve for $\Psi=\Psi(r, \theta, \phi, t)$ in all of space ($0 \leq r<\infty, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$) for $t>0$. Since Schrödinger's equation is linear and homogeneous, the method of separation of variables can be used to solve it. Assuming a product solution of the form $\Psi(r, \theta, \phi, t)=R(r) \Theta(\theta) \xi(\phi) T(t)$ and plugging it into the PDE results in four ODEs-one in r, one in θ, one in ϕ, and one in t.

$$
\left.\begin{array}{rl}
i \hbar \frac{T^{\prime}(t)}{T(t)} & =E \\
\frac{1}{R(r)} \frac{d}{d r}\left(r^{2} R^{\prime}(r)\right)-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E] & =F \\
\frac{\sin \theta}{\Theta(\theta)} \frac{d}{d \theta}\left(\Theta^{\prime}(\theta) \sin \theta\right)+F \sin ^{2} \theta & =G \\
-\frac{\xi^{\prime \prime}(\phi)}{\xi(\phi)} & =G
\end{array}\right\}
$$

The third and fourth eigenvalue problems were solved in Problem 4.4: $F=\ell(\ell+1), G=m^{2}$, $\xi(\phi)=C_{1} e^{i m \phi}$, and $\Theta(\theta)=C_{2} P_{\ell}^{m}(\cos \theta)$, where $\ell=0,1,2, \ldots$ and
$m=-\ell,-\ell+1, \ldots,-1,0,1, \ldots, \ell-1, \ell$. As a result, the second eigenvalue problem becomes

$$
\begin{gathered}
\frac{1}{R(r)} \frac{d}{d r}\left(r^{2} R^{\prime}(r)\right)-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E]=\ell(\ell+1) \\
\frac{d}{d r}\left(r^{2} R^{\prime}(r)\right)-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E] R(r)=\ell(\ell+1) R(r) \\
r^{2} R^{\prime \prime}(r)+2 r R^{\prime}(r)-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E] R(r)=\ell(\ell+1) R(r) .
\end{gathered}
$$

E is negative $(E<0)$ for bound states, and for the ground state in particular, $\ell=0$.

$$
\begin{equation*}
r^{2} R^{\prime \prime}(r)+2 r R^{\prime}(r)-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E] R(r)=0 \tag{1}
\end{equation*}
$$

Make the substitution $u(r)=r R(r)$ to obtain the radial equation.

$$
\begin{gather*}
r^{2}\left[\frac{u(r)}{r}\right]^{\prime \prime}+2 r\left[\frac{u(r)}{r}\right]^{\prime}-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E] \frac{u(r)}{r}=0 \\
r^{2}\left[\frac{r^{2} u^{\prime \prime}(r)-2 r u^{\prime}(r)+2 u(r)}{r^{3}}\right]+2 r\left[\frac{r u^{\prime}(r)-u(r)}{r^{2}}\right]-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E] \frac{u(r)}{r}=0 \\
r^{2} u^{\prime \prime}(r)-2 r u u^{\prime}(r)+2 \pi(r)+2 r u^{\prime}(r)-2 \pi(r)-\frac{2 M r^{2}}{\hbar^{2}}[V(r)-E] u(r)=0 \\
u^{\prime \prime}(r)=\frac{2 M}{\hbar^{2}}[V(r)-E] u(r) \tag{2}
\end{gather*}
$$

What's special about the radial equation is that it's really the TISE, and everything we know from Chapter 2 applies here. Based on Problem 2.2, E must exceed the minimum value of $V(x)$ in order for the solution to be normalized: $-V_{0}<E<0$, that is, $V_{0}+E>0$. Below is a graph of the potential energy function $V(r)$ versus r / a.

Split up the radial equation over the intervals where $V(r)$ is defined.

$$
\begin{aligned}
u^{\prime \prime}(r) & = \begin{cases}\frac{2 M}{\hbar^{2}}\left(-V_{0}-E\right) u(r) & \text { if } r \leq a \\
\frac{2 M}{\hbar^{2}}(0-E) u(r) & \text { if } r>a\end{cases} \\
& = \begin{cases}-\frac{2 M\left(V_{0}+E\right)}{\hbar^{2}} u(r) & \text { if } r \leq a \\
\frac{-2 M E}{\hbar^{2}} u(r) & \text { if } r>a\end{cases}
\end{aligned}
$$

For $r \leq a$, the general solution is written in terms of sine and cosine. For $r>a$, the general solution is written in terms of exponential functions,

$$
u(r)= \begin{cases}C_{3} \cos l r+C_{4} \sin l r & \text { if } r \leq a \\ C_{5} e^{-\kappa r}+C_{6} e^{\kappa r} & \text { if } r>a\end{cases}
$$

where

$$
l=\frac{\sqrt{2 M\left(V_{0}+E\right)}}{\hbar} \quad \text { and } \quad \kappa=\frac{\sqrt{-2 M E}}{\hbar} .
$$

Boundary conditions are necessary to determine C_{3}, C_{4}, C_{5}, and C_{6}. Since $0 \leq r<\infty$, there are conditions as $r \rightarrow 0$ and $r \rightarrow \infty$. Ψ must be finite as $r \rightarrow 0$, and Ψ and its derivatives with respect to r tend to zero as $r \rightarrow \infty$. After separating variables, these conditions pass along to $R(r)$.

$$
\begin{aligned}
\text { finite }=\lim _{r \rightarrow 0} \Psi(r, \theta, \phi, t)=\lim _{r \rightarrow 0} R(r) \Theta(\theta) \xi(\phi) T(t)=\Theta(\theta) \xi(\phi) T(t) \lim _{r \rightarrow 0} R(r) \quad & \Rightarrow \lim _{r \rightarrow 0} R(r)=\text { finite } \\
0 & =\lim _{r \rightarrow \infty} \Psi(r, \theta, \phi, t)=\lim _{r \rightarrow \infty} R(r) \Theta(\theta) \xi(\phi) T(t)=\Theta(\theta) \xi(\phi) T(t) \lim _{r \rightarrow \infty} R(r)
\end{aligned} \quad \Rightarrow \quad \lim _{r \rightarrow \infty} R(r)=0
$$

As a result,

$$
\left\{\begin{array}{l}
\lim _{r \rightarrow 0} u(r)=\lim _{r \rightarrow 0} r R(r)=0 \\
\lim _{r \rightarrow \infty} u(r)=\lim _{r \rightarrow \infty} r R(r)=0
\end{array}\right.
$$

Set $C_{3}=0$ and $C_{6}=0$ to satisfy these boundary conditions.

$$
u(r)= \begin{cases}C_{4} \sin l r & \text { if } r \leq a \\ C_{5} e^{-\kappa r} & \text { if } r>a\end{cases}
$$

Note that the solution for $r \leq a$ could have been found from equation (1), the spherical Bessel equation with $\ell=0$.

$$
R(r)=C_{7} j_{0}(l r)+C_{8} n_{0}(l r)
$$

Because $R(0)$ is finite, $C_{8}=0$.

$$
\begin{aligned}
R(r) & =C_{7} j_{0}(l r) \\
& =C_{7}\left(\frac{\sin l r}{l r}\right) \\
& =C_{9}\left(\frac{\sin l r}{r}\right)
\end{aligned}
$$

In order to determine C_{4} and C_{5}, require $u(r)$ and its derivative to be continuous at $r=a$.

$$
\begin{align*}
\lim _{r \rightarrow a^{-}} u(r) & =\lim _{r \rightarrow a^{+}} u(r): \tag{3}\\
\lim _{r \rightarrow a^{-}} \frac{d u}{d r} & =\lim _{r \rightarrow a^{+}} \frac{d u}{d r}: \quad C_{4} l \cos l a=-C_{5} \kappa e^{-\kappa a} \tag{4}
\end{align*}
$$

Substitute equation (3) into equation (4). Assume $C_{4} \neq 0$.

$$
\begin{aligned}
C_{4} l \cos l a & =-\kappa\left(C_{4} \sin l a\right) \\
l \cos l a & =-\kappa \sin l a \\
-l a \cot l a & =\kappa a \\
-\frac{\sqrt{2 M\left(V_{0}+E\right)}}{\hbar} a \cot \left[\frac{\sqrt{2 M\left(V_{0}+E\right)}}{\hbar} a\right] & =\frac{\sqrt{-2 M E}}{\hbar} a \\
& =\left[\sqrt{\left.\frac{2 M V_{0}}{\hbar^{2}}-\frac{2 M\left(V_{0}+E\right)}{\hbar^{2}}\right] a}\right. \\
& =\sqrt{\frac{2 M V_{0}}{\hbar^{2}} a^{2}-\frac{2 M\left(V_{0}+E\right)}{\hbar^{2}} a^{2}} \\
& =\sqrt{\left(\frac{\sqrt{2 M V_{0}}}{\hbar} a\right)^{2}-\left[\frac{\sqrt{2 M\left(V_{0}+E\right)}}{\hbar} a\right]^{2}}
\end{aligned}
$$

Introduce the variables,

$$
z_{0}=\frac{\sqrt{2 M V_{0}}}{\hbar} a \quad \text { and } \quad z=\frac{\sqrt{2 M\left(V_{0}+E\right)}}{\hbar} a,
$$

to get a transcendental equation for the eigenvalues.

$$
-z \cot z=\sqrt{z_{0}^{2}-z^{2}}
$$

Divide both sides by z to get an equation analogous to Equation 2.159 (page 72) in the textbook.

$$
-\cot z=\sqrt{\left(z_{0} / z\right)^{2}-1}
$$

Below are plots of $y=-\cot z$ (in blue) and $y=\sqrt{\left(z_{0} / z\right)^{2}-1}$ (in red) versus z for various values of z_{0}.

There exists a ground state when the red curve intersects the first blue curve, which can occur anywhere between $z=\pi / 2$ and $z=\pi$.

$$
\begin{gathered}
\frac{\pi}{2} \leq z<\pi \\
\frac{\pi}{2} \leq l a<\pi \\
\frac{\pi}{2} \leq \frac{\sqrt{2 M\left(V_{0}+E\right)}}{\hbar} a<\pi \\
\frac{\pi^{2} \hbar^{2}}{8 M a^{2}} \leq V_{0}+E<\frac{\pi^{2} \hbar^{2}}{2 M a^{2}}
\end{gathered}
$$

There are no intersections below a certain value of z_{0}. Once z_{0} reaches $\pi / 2 \approx 1.57$, there is one intersection at $z=\pi / 2$. Therefore, if

$$
\begin{aligned}
z_{0}=\frac{\sqrt{2 M V_{0}}}{\hbar} a & <\frac{\pi}{2} \\
V_{0} a^{2} & <\frac{\pi^{2} \hbar^{2}}{8 M},
\end{aligned}
$$

then there is no ground state.

