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Problem 4.11

A particle of mass m is placed in a finite spherical well:
Vo, r<a
0, T > a.

Find the ground state, by solving the radial equation with ¢ = 0. Show that there is no bound
state if Vpa? < 72h?/8m.

Solution

The governing equation for the wave function is Schrédinger’s equation. (Use M for the mass.)

ov h?
h—— = ——— VU + VT
ih—, 5 MV +V
If the potential energy function is spherically symmetric V' = V(r), then the Laplacian operator is

expanded in spherical coordinates (7,0, ¢), where € is the angle from the polar axis.
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The aim is to solve for ¥ = U(r, 6, ¢,t) in all of space (0 <r < o00,0<6 <7, 0<¢ <27) for

t > 0. Since Schrodinger’s equation is linear and homogeneous, the method of separation of

variables can be used to solve it. Assuming a product solution of the form

U(r,0,0,t) = R(r)©(0)£(¢)T'(t) and plugging it into the PDE results in four ODEs—one in 7, one

in @, one in ¢, and one in t.

} + V(r)¥(r,0,¢,t)
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The third and fourth eigenvalue problems were solved in Problem 4.4: F = {({ + 1), G = m?,
£(¢) = C1e™?, and ©(0) = CoPJ"(cos ), where £ = 0,1,2,... and
m=—0—0+1,...,—1,0,1,...,£—1,£. As a result, the second eigenvalue problem becomes

,,,2
! d<r2R'(r)> My B = et 1)

R(r) dr h?
2
dii (ﬂR’(ﬂ) - 2]\;2 [V(r) — E]R(r) = £(£ + 1)R(r)
2
T2R”(7’) +2rR (r) — %[V(r) — E|R(r) =4({+ 1)R(r).
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E is negative (E < 0) for bound states, and for the ground state in particular, ¢ = 0.

2Mr?

r?R"(r) + 2rR/(r) — 5

[V(r) = EIR(r) =0 (1)

Make the substitution u(r) = rR(r) to obtain the radial equation.

2 {“Y)]” +or {“Y)]/ _ 2My* V(r) — E]M —0

h2 r
2 (r) — 2rd/ (r u(r ru’(r) —u(r r2 u(r
o [ =20 0] [0 )] B ppat)
2 ! / 2Mr?
r?u’(r) — 2o + 2uix) + 2euHT) — 2uix) — w2 [V(r) = Elu(r) =0
W(r) = 22V (r) ~ Blulr) @)

What’s special about the radial equation is that it’s really the TISE, and everything we know
from Chapter 2 applies here. Based on Problem 2.2, E must exceed the minimum value of V()
in order for the solution to be normalized: —Vj < E < 0, that is, V5 + £ > 0. Below is a graph of
the potential energy function V(r) versus r/a.
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Split up the radial equation over the intervals where V (r) is defined.

2M
?(—Vg — E)u(r) ifr<a
u(r) =
2M
F(O — E)u(r) ifr>a
2M E
—(‘:;Hu(r) ifr<a
| —2mE
\TU(T) ifr>a
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For r < a, the general solution is written in terms of sine and cosine. For r > a, the general
solution is written in terms of exponential functions,

Cscoslr + Cysinlr ifr <a
u(r) =

Cse " + Cge”™" ifr>a ’
where
2M(Vp + E) —2MFE
= — and Kk = 5

Boundary conditions are necessary to determine Cs, Cy, Cs, and Cg. Since 0 < r < oo, there are
conditions as r — 0 and r — oco. ¥ must be finite as r — 0, and ¥ and its derivatives with respect
to r tend to zero as r — oco. After separating variables, these conditions pass along to R(r).

finite = }g% U(r,0,¢,t) = llg((l) R(r)©(0)¢(p)T(t) = O(0)&()T(t) lim R(r) = lim R(r) = finite

r—0 r—0

0= lim ¥(r,0,0,1) = lim R(r)OO)EDT(H) = O@OEGT() m Rr) = lim R(r) =0
As a result,
limu(r) = lim rR(r) =0

r—0 r—0

Jim ulr) = Jim rR() =0

Set C3 =0 and Cg = 0 to satisfy these boundary conditions.
Cysinlr ifr <a

u(r) =
Cse ™" ifr>a

Note that the solution for r < a could have been found from equation (1), the spherical Bessel
equation with ¢ = 0.
R(T) = C7j0(l7“) + ano(l’l“).

Because R(0) is finite, Cg = 0.

In order to determine Cy and Cj5, require u(r) and its derivative to be continuous at r = a.

lim w(r) = lm wu(r): Cysinla = Cse " (3)
r—a— r—a™t

. du . du
m — = im —
r—a— dr r—at dr

Cylcosla = —Cske™ " 4)
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Substitute equation (3) into equation (4). Assume Cy # 0.
Calcosla = —k(Cysinla)
lcosla = —ksinla

—lacotla = ka

- 2M(V(J+E)acot[,/2M(vb+E)a _ V2ME
h h h

oMVy 2M(Vo + E)
- 2 12

— a2

2MVo , 2M(Vo + E)
R YT T e

2

a

h h
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Introduce the variables,

V2MV 2M(Vy + E)
Z0 = 7 a and z= fa,

to get a transcendental equation for the eigenvalues.

2

—zcotz = /25 — 22

Divide both sides by z to get an equation analogous to Equation 2.159 (page 72) in the textbook.

—cotz =+/(20/2)? — 1
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Below are plots of y = —cot z (in blue) and y = 1/(20/2)% — 1 (in red) versus z for various values
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There exists a ground state when the red curve intersects the first blue curve, which can occur

anywhere between z = 7/2 and z = 7.

a <<

There are no intersections below a certain value of zy. Once 2y reaches m/2 ~ 1.57, there is one

intersection at z = 7/2. Therefore, if

then there is no ground state.
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